長按下面二維碼即可 |
長按下面二維碼即可 |
沖刺期來啦,幫幫為大家準備了一大波干貨,本期內(nèi)容的主題是導數(shù)應用中的難點——中值定理,一起來看看吧。
▶導數(shù)的應用分為四個方面的問題:
、倜枥L函數(shù)圖形方面,包括單調(diào)區(qū)間與極值、凹凸區(qū)間與拐點、函數(shù)的漸進線等,這方面相對來說解題思路比較固定,考生根據(jù)解題步驟可以按部就班做題;
②方程根的應用,形式相對靈活,考察根的個數(shù)情況,或者已知根的情況討論未知參數(shù)的取值范圍,這類問題一般是從描繪函數(shù)圖形角度考慮,比較常見;
、坳P(guān)于中值定理的證明題,是考生普遍認為的一個難點;
、軘(shù)學三的考生需要考慮的導數(shù)在經(jīng)濟學中的應用問題,去年的真題中就有涉及。
考研幫劉妍老師建議:同學們應就這幾方面的應用總結(jié)歸納,切不可只看重其中某一方面,因為導數(shù)應用是考研數(shù)學的命題熱點,同學們需重視,若有某一方面的薄弱環(huán)節(jié),可以在考前抓緊時間熟悉再熟悉。
▶現(xiàn)就中值定理方面的應用,老師有幾點要叮囑大家。
1、有關(guān)中值定理的證明問題,將中值定理和介值定理或幾分中值定理結(jié)合命題是比較常見的命題形式。
4、對于"存在兩個點"的問題,一般先用一次拉格朗日中值定理(或柯西中值定理),然后再用一次柯西中值定理(或拉格朗日中值定理)。
5、題設中含有二階或者二階以上導數(shù)時,應注意考慮用泰勒公式進行分析討論。
6、證明不等式也是一種常見的形式,先回想一下,證明不等式的一般方法有:
、倮脝握{(diào)性證明不等式;
、诶脴O值與最值證明不等式;
③利用凹凸性證明不等式;
、芾美窭嗜罩兄刀ɡ碜C明不等式;
⑤利用泰勒公式證明不等式。
相對來說,證明不等式有一定的步驟可循,要么直接移項構(gòu)造輔助函數(shù),要么先將不等式做適當變形后再構(gòu)造輔助函數(shù),應用拉格朗日中值定理的難點在于找到合適的函數(shù),使其在某兩點的函數(shù)值之差與要證的不等式聯(lián)系起來。
如果題目中有二階導數(shù)信息,或者輔助函數(shù)的一階導數(shù)不能確定符號,需要二階甚至二階以上的導數(shù)信息才能證明不等式,此時可直接考慮用泰勒公式進行證明。
編輯推薦:
考試吧12月24日考后首發(fā)2017年考研真題及答案解析 ※ 關(guān)注微信獲取
最全最權(quán)威:2017年考研數(shù)學公式大全
· | 2022考研復試聯(lián)系導師有哪些注意事 | 04-28 |
· | 2022考研復試面試常見問題 | 04-28 |
· | 2022年考研復試面試回答提問方法有 | 04-28 |
· | 2022考研復試怎么緩解緩解焦慮心態(tài) | 04-27 |
· | 2022年考研復試的訣竅介紹 | 04-27 |
· | 2022年考研復試英語如何準備 | 04-26 |
· | 2022年考研復試英語口語常見句式 | 04-26 |
· | 2022年考研復試的四個細節(jié) | 04-26 |
· | 2022考研復試準備:與導師及時交流 | 04-26 |
· | 2022考研復試面試的綜合技巧 | 04-26 |